MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF AERONAUTICAL ENGINEERING

IV B.TECH I SEMESTER

R15 SUPPLEMENTARY PREVIOUS QUESTION PAPERS

CODE	NAME OF THE SUBJECT
R15A2121	Avionics
R15A0331	CAD/CAM
R15A0368	Mechanical Vibrations \& Structural Dynamics

MALLA REDDY COLLEGE OF ENGINEERING \& TECHNOLOGY

(Autonomous Institution - UGC, Govt. of India)
IV B.Tech I Semester Supplementary Examinations, February 2021 Avionics
(AE)

Time: $\mathbf{2}$ hours 30 min
Max. Marks: 75
Answer Any Five Questions
All Questions carries equal marks.
1 i) Explain the development of avionics architecture.
ii) Give the word format of ARNIC 629 and explain.

2 Discuss about an interface between pilot and different aircraft sensor

3 Write short notes on head up display and helmet mounted display in detail.
[15M]

4 Explain data communication systems in detail.

5 Write short note on gyroscope and accelerometers.

6 Explain about integration of GPS and INS in detail.
7 The principles and types of navigation system and write short note on any one.
8 Discuss about satellite landing system.

Code No: R15A0331

MALLA REDDY COLLEGE OF ENGINEERING \& TECHNOLOGY

(Autonomous Institution - UGC, Govt. of India)
IV B.Tech I Semester Supplementary Examinations, February 2021 CAD/CAM
(ME\&AE)

Time: $\mathbf{2}$ hours $\mathbf{3 0} \mathbf{m i n}$
min
Max. Marks: 75

> Answer Any Five Questions
> All Questions carries equal marks.

1 Explain the concept of various co ordinate systems required for geometric display systems. Give an example?

Discuss the concept of obtaining a rotation about an arbitrary point in XY plane?
Explain the constructive solid geometry for the representation of solids?
What is meant by Geometric modelling? Explain different types of geometric modelling and compare them. and contouring?

Write about the Horizontal and vertical axis machining centre in a CNC?

Explain the part design and manufacturing attributes giving examples?.

R15

Code No: R15A0368

MALLA REDDY COLLEGE OF ENGINEERING \& TECHNOLOGY

(Autonomous Institution - UGC, Govt. of India)
IV B.Tech I Semester Supplementary Examinations, February 2021
Mechanical Vibrations \& Structural Dynamics
(AE)

Roll No										

Time: $\mathbf{2}$ hours $\mathbf{3 0} \mathbf{~ m i n}$

Max. Marks: 75

Answer Any Five Questions All Questions carries equal marks.

1 Determine the natural frequency of system in figure 1

Fig. 1
2 A body of 5 kg is supported on a spring of stiffness $200 \mathrm{~N} / \mathrm{m}$ and has dashpot connected to it which produces a resistance of .002 N at the velocity of $1 \mathrm{~cm} / \mathrm{sec}$. In what ratio will thee amplitude of vibration to be reduced after 5 cycles.

3 Discuss in detail about vibration measuring instrument Vibrometer and Accelerometer.

4 A machine having a mass of 100 kg and supported on spring of total stiffness $7.84 \times 10^{5} \mathrm{~N} / \mathrm{m}$ has a un unbalanced rotating element which results in disturbing force of 392 N at a speed of 3000 rpm . Assuming a damping factor equals to 0.20 .
(a)Determine amplitude of motion due to unbalance,
(b) Transmissibility.

5 Consider a double pendulum of length $\mathrm{L}_{1}=\mathrm{L}_{2}=\mathrm{L}$. Determine the natural [15M] frequency of system $\mathrm{k}=100 \mathrm{~N} / \mathrm{m}, \mathrm{M}_{1}=2 \mathrm{Kg}, \mathrm{M}_{2}=5 \mathrm{~kg} \mathrm{~L}=0.2 \mathrm{~m}, \mathrm{a}=0.1 \mathrm{~m}$ as shown in figure 2.

Fig. 2
6 Calculate the natural frequency of system of $K_{1}=40 \mathrm{~N} / \mathrm{m}$,
$K_{2}=60 \mathrm{~N} / \mathrm{m} \mathrm{M}_{1}=2 \mathrm{Kg}, \mathrm{M}_{2}=5 \mathrm{~kg}$ as shown in figure 3 .

Fig. 3
7 Solve for the lowest natural frequency of the system by Rayleigh's $\operatorname{method} \mathrm{E}=1.96 \mathrm{X} 10^{11} \mathrm{~N} / \mathrm{m}^{2}, \mathrm{I}=4 \mathrm{X} 10^{7} \mathrm{~m}^{4}$ in figure 4.

Fig. 4

Determine the frequency equation for a beam with both ends free having [15M] transverse vibrations.

